Real Numbers Important Formulas

S No.	Type of Numbers	Description
1	Natural Numbers	N = {1,2,3,4,5} It is the counting numbers
2	Whole Numbers	W= {0,1,2,3,4,5} It is the counting numbers + zero
3	Integers	All whole numbers, including negative numbers + Positive numbers like -4,-3,-2,-1,0,1,2,3,4,5 so on. Like whole numbers, integers don't include fractions or decimals.
4	Positive Integers	Z+ = 1,2,3,4,5,
5	Negative Integers	Z- = -1,-2,-3,-4,-5,

6	Rational Numbers	A number is called rational if it can be expressed in the form of p/q where p and q are integers (q> 0). For example, P/q, ⁴ / ₅
7	Irrational Number	A number is called irrational if it cannot be expressed in the form of p/q where p and q are integers (q> 0). For example, $\sqrt{3}$.
8	Real Numbers	A real number is a number that can be found on the number line. Real Numbers are the numbers that we normally use and apply in real-world applications. Real numbers include Natural Numbers, Integers, Whole Numbers, Rational Numbers, Fractions, and Irrational Numbers.

ALGEBRAIC FORMULAS

•
$$(a+b)^2 = a^2 + b^2 + 2ab$$

•
$$(a-b)^2 = a^2 + b^2 - 2ab$$

•
$$(a+b)(a-b) = a^2 - b^2$$

•
$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

•
$$(x + a)(x - b) = x^2 + (a - b)x - ab$$

•
$$(x-a)(x+b) = x^2 + (b-a)x - ab$$

•
$$(x-a)(x-b) = x^2 - (a+b)x + ab$$

•
$$(a + b)^3 = a^3 + b^3 + 3ab(a + b)$$

•
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$

•
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2xz$$

•
$$(x + y - z)^2 = x^2 + y^2 + z^2 + 2xy - 2yz - 2xz$$

•
$$(x - y + z)^2 = x^2 + y^2 + z^2 - 2xy - 2yz + 2xz$$

•
$$(x-y-z)^2 = x^2 + y^2 + z^2 - 2xy + 2yz - 2xz$$

•
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz)$$

•
$$x^2 + y^2 = \frac{1}{2} [(x + y)^2 + (x - y)^2]$$

•
$$(x + a) (x + b) (x + c) = x^3 + (a + b + c)x^2 + (ab + bc + ca)x + abc$$

•
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

•
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

•
$$x^2 + y^2 + z^2 - xy - yz - zx = \frac{1}{2} [(x-y)^2 + (y-z)^2 + (z-x)^2]$$

OTHER TRIGONOMETRIC FORMULAS

- $\sin(90^{\circ} \theta) = \cos \theta$
- $cos(90^{\circ} \theta) = sin \theta$
- tan(90° θ) = cot θ
- $\cot(90^{\circ} \theta) = \tan \theta$
- $sec(90^{\circ} \theta) = cosec\theta$
- $\csc(90^{\circ} \theta) = \sec\theta$
- $\sin 2\theta + \cos 2\theta = 1$
- $\sec 2\theta = 1 + \tan 2\theta$ for $0^{\circ} \le \theta < 90^{\circ}$
- Cosec2 θ = 1 + cot2 θ for $0^{\circ} \le \theta \le 90^{\circ}$

$$\begin{array}{l} sin \ \theta = \frac{Side \ opposite \ to \ angle \ \theta}{Hypotenuse} = \frac{Perpendicular}{Hypotenuse} = \frac{P}{H} \\ Cos \ \theta = \frac{Adjacent \ side \ to \ angle \ \theta}{Hypotenuse} = \frac{Base}{Hypotenuse} = \frac{B}{H} \\ Tan \ \theta = \frac{Side \ opposite \ to \ angle \ \theta}{Adjacent \ side \ to \ angle \ \theta} = \frac{P}{B} \\ Sec \ \theta = \frac{1}{\cos \theta} \\ Cot \ \theta = \frac{1}{\tan \theta} \\ Cosec \ \theta = \frac{1}{\sin \theta} \\ Tan \ \theta = \frac{Sin \ \theta}{Cos \ \theta} \end{array}$$

Angle	0°	30°	45°	60°	90°
Sinθ	0	1/2	1/√2	√3/2	1
Cosθ	1	√3/2	1/√2	1/2	0
Tanθ	0	1/√3	1	√3	Undefined
Cotθ	Undefined	√3	1	1/√3	0
Secθ	1	2/√3	√2	2	Undefined
Cosecθ	Undefined	2	√2	2/√3	1

CIRCLES FORMULAS

- Circumference of the circle = $2 \pi r$
- Area of the circle = π r2
- Area of the sector of angle $\theta = (\theta/360) \times \pi r_2$
- Length of an arc of a sector of angle $\theta = (\theta/360) \times 2 \pi r$

(r = radius of the circle)

SPHERE FORMULAS

Diameter of sphere	2r
Surface area of sphere	4 π r2
Volume of Sphere	4/3 π rз

CYLINDER FORMULAS

Curved surface area of Cylinder	2 πrh
Area of two circular bases	2 πr2
Total surface area of Cylinder	Curved surface area of Cylinder + Area of Circular bases = $2 \pi rh + 2 \pi r_2$

Volume of Cylinder	π r2 h	

CONE FORMULAS

Slant height of cone	$U = \sqrt{(r_2 + h_2)}$
Curved surface area of cone	πτΙ
Total surface area of cone	πr (l + r)
Volume of cone	// ₃ π r2 h

Cuboid Formulas

Perimeter of cuboid	4(l + b +h)
Length of the longest diagonal of a cuboid	$\sqrt{(l_2 + b_2 + h_2)}$
Total surface area of cuboid	$2(l \times b + b \times h + l \times h)$
Volume of Cuboid	l × b × h

Here, I = length, b = breadth and h = height. In case of Cube, put I = b = h = a, as cube all its sides of equal length, to find the surface area and volumes.

• Sphere Formulas

Diameter of sphere	2r
Surface area of sphere	4 π r ²
Volume of Sphere	4/3 π r ³

• Cylinder Formulas

Curved surface area of Cylinder	2 πrh
Area of two circular bases	2 πr ²
Total surface area of Cylinder	Curved surface area of Cylinder + Area of Circular bases = 2 πrh + 2 πr^2
Volume of Cylinder	$\pi r^2 h$

• Cone Formulas

Slant height of cone	$I = \sqrt{(r^2 + h^2)}$
Curved surface area of cone	πrl
Total surface area of cone	πr (l + r)
Volume of cone	1/3 π r ² h

• Cuboid Formulas

Perimeter of cuboid	4(I + b +h)
Length of the longest diagonal of a cuboid	$\sqrt{(l^2 + b^2 + h^2)}$
Total surface area of cuboid	$2(l \times b + b \times h + l \times h)$
Volume of Cuboid	I×b×h